Band-gap engineering of ZnO1-xSx films grown by rf magnetron sputtering of ZnS target

نویسندگان

  • V. Khomyak
  • I. Shtepliuk
  • Volodymyr Khranovskyy
  • Rositsa Yakimova
  • V.Khomyak
  • I.Shtepliuk
  • V. Khranovskyy
  • R. Yakimova
چکیده

Structural and optical properties of ZnO1-хSх (0 ≤ x ≤ 1.0) thin films grown onto sapphire substrates (с-Al2O3) at 300 C by radio frequency (rf) magnetron sputtering of ZnS ceramic target are studied. A possibility of purposeful controlling sulfur content and, as consequence, ZnO1-хSх band gap energy via changing the ratio of the partial pressures of argon and oxygen are revealed. Linear dependence of ZnO lattice parameter c on S content suggests that structural properties of single-phase ternary alloys in the composition range between ZnO and ZnS obey Vegard’s law. The mechanisms of influence of gas mixing ratio on film growth and band gap energy are discussed. Cu(In,Ga)Se2 (CIGS)-based heterojunction solar cells with ZnO1-хSх buffer layers were fabricated by one-cycle magnetron sputtering procedure. Electrical characteristics of Cd-free devices are comparable to those of CdS-containing photovoltaic heterostructures, thereby indicating prospects of using ZnO1-хSх layers for fabrication of CIGS solar cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Valence band structure and optical properties of ZnO1-xSx ternary alloys

The k.p method and the effective mass theory are applied to compute valence-band electronic structure and optical properties of ZnO1-хSх ternary alloys under biaxial strain. A significant modification of the band structure with increasing sulfur content is revealed. Features of wavefunctions and matrix elements in the transverse electrical (TE) and transverse magnetic (TM) regimes for three val...

متن کامل

Structural and optical properties of ZnS thin films deposited by RF magnetron sputtering

Zinc sulfide [ZnS] thin films were deposited on glass substrates using radio frequency magnetron sputtering. The substrate temperature was varied in the range of 100°C to 400°C. The structural and optical properties of ZnS thin films were characterized with X-ray diffraction [XRD], field emission scanning electron microscopy [FESEM], energy dispersive analysis of X-rays and UV-visible transmiss...

متن کامل

The effect of sputtering RF power on structural, optical and electrical properties of CuO and CuO2 thin films

In this paper, the RF power change effect on the structural, optical and electrical properties of CuO thin films prepared by RF reactive magnetron sputtering deposited on glass substrates are studied. At first, the thin films are prepared at 150, 280, 310 and 340W respectively. Then, the films are characterized by XRD, AFM, Uv-visible and four-point probe analysis respectively. The results show...

متن کامل

Physical Properties of Reactively Sputter-Deposited C-N Thin Films

This work aims to prepare and study amorphous carbon nitride (CNx) films. Films were deposited by reactive magnetron radiofrequency (RF) sputtering from graphite target in argon and nitrogen mixture discharge at room temperature. The ratio of the gas flow rate was varied from 0.1 to 1. Deposited films were found to be amorphous. Highest Nitrogen concentration achieved was 42 atomic percent whic...

متن کامل

Influence of target-to-substrate distance on the properties of AZO films grown by RF magnetron sputtering

Transparent conductive aluminum-doped ZnO (AZO) films were prepared by RF magnetron sputtering on glass substrates with specifically designed ZnO target using high-purity of zinc oxide (99.99%) and aluminum hydroxide (99.99%) powders. Systematic study on dependence of target-to-substrate distance (D ) on structural, electrical and optical properties of the as-grown AZO ts films was mainly inves...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015